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Ðåçþìå. Ðîçãëÿíóòî íàáëèæåíå îá÷èñëåííÿ ïîäâiéíèõ iíòåãðàëiâ ç îñîá-
ëèâîñòÿìè çà äîïîìîãîþ òåîðåìè Ãðiíà, äå òî÷êà ñïîñòåðåæåííÿ íàëå-
æèòü îáëàñòi àáî ëåæèòü íà ìåæi îáëàñòi. Âèêîðèñòîâóþ÷è âiäïîâiäíó
ôîðìóëó, ïîäâiéíèé iíòåãðàë ïî îäíîçâÿçíié îáëàñòi çâåäåíî äî êðèâîëi-
íiéíîãî iíòåãðàëà. Ïiñëÿ ïàðàìåòðèçàöi¨ íàáëèæåíå çíà÷åííÿ îá÷èñëåíî
çà äîïîìîãîþ ñêëàäåíî¨ êâàäðàòóðíî¨ ôîðìóëè òðàïåöié äëÿ ïåðiîäè÷íèõ
ôóíêöié. Äëÿ ïîðiâíÿííÿ ïðèâåäåíî ìåòîä ðàäiàëüíîãî iíòåãðóâàííÿ, à
òàêîæ ïiäõiä ç âèêîðèñòàííÿì êóáàòóðíèõ ôîðìóë äî ïîäâiéíèõ iíòåãðà-
ëiâ ïiñëÿ âiäïîâiäíî¨ çàìiíè çìiííèõ. Íàâåäåíî ÷èñåëüíi åêñïåðèìåíòè,
ÿêi âiäîáðàæàþòü õàðàêòåðèñòèêè òà åôåêòèâíiñòü çàñòîñóâàííÿ êîæíîãî
ç òðüîõ ìåòîäiâ.

Abstract. We considered an approximate calculation of singular double
integrals based on Green's theorem, where a source point belongs to a domain
or it is lying on a boundary of the domain. Using the corresponding formula
a double integral over a simply connected domain is reduced to a bounda-
ry integral. After parameterization and applying the composite trapezoidal
rule for periodic functions the approximate value of the integral is calculated.
For the comparison, we provided also the radial integration method and the
approach of double integrals calculation using cubatures after an appropriate
change of variables. The numerical results that represent the e�ectiveness of
each of these three methods are given at the end.

1. Introduction

A lot of problems of mathematical physics that are de�ned in a domain
and described by di�erential equations can be reduced to a boundary integral
equation. It means that the dimension of the problem is decreased and, as a
consequence, it usually decreases the number of computational e�orts needed
to solve the problem. However, often (for instance, in a case when the funda-
mental solution of a di�erential equation is unknown, in general) such types of
equations can be reduced only to a boundary-domain integral equation (BDIE)
where the necessity of the numerical integration of domain integrals remains.

For two-dimensional domains, we obtain double integrals. There can be
considered two types of double integrals: double integrals with known integrand
and double integrals with unknown integrand. An example of such integrals is
provided in [5], where the left side of the system of BDIEs contains the �rst-
type integrals and the right side includes double integral with known integrand.

Key words. Singular double integrals; Green's theorem; Radial integration method;
Quadratures.
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Knowing that type it is possible to choose the most e�cient and expedient
approach to calculate an integral.

For the elliptic equation with variable coe�cients that considered in [5] and
based on the operator A such that

Au = ∇ · (σ∇u)

with known function σ > 0, a parametrix function P was used to obtain BDIEs.
The parametrix should satisfy the following expression (see [13])

AxP (x, y) = δ(x− y) +R(x, y),

where δ is the Dirac function and the remainder function R has a weak singu-
larity for x = y. The parametrix can be chosen as

P (x, y) =
ln |x− y|
2πσ(y)

, x, y ∈ R2

and then the corresponding remainder function is

R(x, y) =
(x− y) · ∇σ(x)

2πσ(y)|x− y|2
, x, y ∈ R2.

We consider the double integrals based on these two functions, but with
some simpli�cations to observe the behavior and order of approximations for
the respective singular integrals

Ps(x, y) = ln |x− y|, x, y ∈ R2,

Rs(x, y) =
(x− y) · ∇σ(x)

|x− y|2
, x, y ∈ R2.

Let D be a simply connected bounded domain in R2 with boundary ∂D ∈ C2

and σ ∈ C1(D), σ > 0. Let us denote Γ = ∂D. The aim is to calcualte the
following integrals

I1(x) =
1

2π

∫
D

∂Ps(x, y)

∂ν(x)
dy =

1

2π

∫
D

(x− y) · ν(x)
|x− y|2

dy, x ∈ Γ, (1)

I2(x) =
1

2π

∫
D

Rs(x, y)dy =
1

2π

∫
D

(x− y) · ∇σ(x)

|x− y|2
dy, x ∈ D, (2)

I3(x) =
1

2π

∫
D

Ps(x, y)dy =
1

2π

∫
D

ln |x− y|dy, x ∈ D, (3)

where ν = (ν1, ν2) � outward unit normal vector to the boundary Γ.
The motivation of considering such integrals is that they appear in BDIEs

(see, for example, [3,4]), which are an equivalent form of boundary value prob-
lems for the elliptic equation with variable coe�cients de�ned by the operator
A.

The �rst approach that will be used to calculate integrals de�ned above is
based on Green's theorem and corresponding formula. The second one � the
radial integration method (RIM) allows having a deal with boundary integrals
instead of double integrals. Finally, the last method that will be considered is
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an application of quadrature formulas directly to double integrals after some
change of variables (see [3]). The goal of this article is to compare the e�ective-
ness of each of these methods that applied to singular double integrals (1)-(3)
with known integrands.

For the outline of the work, in Section 2, we reduce double integrals to
boundary integrals using Green's theorem, rewrite them as ordinary integrals
over [0, 2π] taking into account boundary parameterization and splitting singu-
larities from some kernels where it is needed. A brief schema of RIM application
and the approach based on quadratures for double integrals are presented in
Section 3. Numerical integration of integrals for all three methods is provided
in Section 4. In Section 5, a few numerical examples for di�erent domains and
functions σ are considered. The main remarks and conclusions are given in
Section 6.

2. Green's theorem application

For the integral I1 the source point x will not coincide with the �eld point
y, although these points can be close to each other as much as possible. It is
so-called a nearly singular integral.Since Rs as a simpli�cation of the remainder
function R has the same weak singularity when x = y, I2 is integrable. The
last one integral I3 has a logarithmic singularity.

Let us recall Green's theorem that shows the connection between a line inte-
gral around a closed curve Γ and a double integral over the region bounded by
that curve. Let Γ be a positively oriented, piecewise smooth, a Jordan curve
in a plane, and let D is the region bounded by Γ. If L, Q are functions of
(y1, y2) de�ned on an open region containing D and having continuous partial
derivatives there, then∫∫

D

( ∂L

∂y1
− ∂Q

∂y2

)
dy1dy2 =

∫
Γ

Qdy1 + Ldy2 (4)

where the path of integration along Γ is anticlockwise [6]. We assume that the
boundary Γ has the following parametric representation

Γ = {x(t) = (x1(t), x2(t)), t ∈ [0, 2π]}. (5)

Since y = (y1, y2) = (x1(τ), x2(τ)) we can rewrite the right side of the (4) in
the following form

∫
Γ

Qdy1 + Ldy2 =

2π∫
0

[
Q(x1(τ), x2(τ))x

′
1(τ) + L(x1(τ), x2(τ))x

′
2(τ)

]
dτ. (6)

Based on formulas (4), (6) and knowing functions L and Q it is possible to
reduce double integrals (1)-(3) to ordinary integrals over [0, 2π] to apply corre-
sponding quadratures.
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Let's consider I1(x) and provide transformation steps to obtain functions L
and Q. Hence,

(x1 − y1)ν1(x) + (x2 − y2)ν2(x)

|x− y|2
⇒

∂L

∂y1
=

(x1 − y1)ν1(x)

|x− y|2
;
∂Q

∂y2
=

−(x2 − y2)ν2(x)

|x− y|2
.

Therefore
L = − ln |x− y|ν1(x), Q = ln |x− y|ν2(x).

Here and further we omit variables of functions L,Q and assume that they
are the functions of points x and y. Substituting this into (1) and taking into
account (5) we obtain that

I1(x(t)) =
1

2π

2π∫
0

ln |x(t)− x(τ)|
(
ν2(x(t))x

′
1(τ)− ν1(x(t))x

′
2(τ)

)
dτ,

t ∈ [0, 2π].

(7)

We denote the integrand in (7) as a function H1(t, τ). It is easy to see that
H1(t, τ) has a logarithmic singularity and following the approach from the [11]
it can be rewritten as

H1(t, τ) = H
(1)
1 (t, τ) ln

4

e
sin2

( t− τ

2

)
+H

(2)
1 (t, τ)

with

H
(1)
1 (t, τ) =

1

2

(
ν2(x(t))x

′
1(τ)− ν1(x(t))x

′
2(τ)

)
and

H
(2)
1 (t, τ) =



1

2

(
ν2(x(t))x

′
1(τ)− ν1(x(t))x

′
2(τ)

)
ln

|x(t)− x(τ)|2
4
e sin

2( t−τ
2 )

for t ̸= τ,

−1

2
|x′(t)| ln

(
e|x′(t)|2

)
for t = τ.

Considering I2(x) and making the similar steps as for I1(x) we obtain

I2(x) =
1

2π

2π∫
0

H2(x, τ)dτ, x ∈ D, (8)

where

H2(x, τ) = ln |x− x(τ)|
(∂σ(x)

∂x2
x′1(τ)−

∂σ(x)

∂x1
x′2(τ)

)
.

In this case, we avoid singularity since x belongs to the domain D and integra-
tion is over the curve Γ.

Finally, transformations for I3

ln |x− y| = 0.25 ln |x− y|2 − (−0.25 ln |x− y|2) = ∂L

∂y1
− ∂Q

∂y2
.
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After integration of partial derivatives of L and Q we obtain that

L =
1

4

[
(y1 − x1) ln |x− y|2 + 2(x2 − y2) arctan

(x1 − y1
y2 − x2

)
− 2y1

]
,

Q = −1

4

[
(y2 − x2) ln |x− y|2 + 2(x1 − y1) arctan

(y2 − x2
x1 − y1

)
− 2y2

]
.

Grouping those terms in L and Q and due to the boundary representation (5)
the integral I3(x) can be written as

I3(x) =
1

2π

2π∫
0

[
H

(1)
3 (x, τ) +H

(2)
3 (x, τ) +H

(3)
3 (x, τ)

]
dτ, x ∈ D (9)

with

H
(1)
3 (x, τ) = ln |x− x(τ)|

(
(x2 − x2(τ))x

′
1(τ) + (x1(τ)− x1)x

′
2(τ)

)
,

H
(2)
3 (x, τ) =

1

2

[
(x1(τ)− x1) arctan

(x2(τ)− x2
x1 − x1(τ)

)
+

+(x2 − x2(τ)) arctan
(x1 − x1(τ)

x2(τ)− x2

)]
,

H
(3)
3 (x, τ) =

1

2

[
x2(τ)x

′
1(τ)− x1(τ)x

′
2(τ)

]
.

Note, that H
(2)
3 is bounded and in case we have zero in any denominator of

these two fractions the limit will be zero for that speci�c term.

3. The RIM and the quadratures-based approach

Double integrals mentioned in the introduction also can be calculated by the
RIM that has been developed by Gao [7, 8]. Following the speci�c steps, this
method allows to compute boundary integrals instead of double integrals and
avoid singularities. As advantages, we can point out that steps are universal
for di�erent integrals and are the same for two and three-dimensional domains.
However, in the case of unknown integrand there should be some approximation
(for instance, by radial basis functions) to use this method. Also, not always
the integral over [0, 1] that appears in those steps can be calculated analytically,
so some numerical methods should be applied as well. Numerical evaluation of
arbitrary singular domain integrals using the RIM can be found in [9, 10].

Following the RIM steps from [1, 2] a double integral over two-dimensional
domain D that bounded by a boundary Γ with known integrand f(y) with a
�eld point y = (y1, y2) and the source point x = (x1, x2), can be transformed
into a boundary integral as described below.

1. The main expression is∫
D

f(y)dy =

∫
Γ

1

rd
∂r

∂ν
F (y)ds(y), (10)
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where

F (y) =

r(y)∫
0

f(y)rddr (11)

and d = 1 for two or d = 2 for three-dimentional space, respectively.
2. In order to evaluate the radial integral in (11), the coordinates y1, y2

have to be presented in terms of the distance r using

yi = xi + r,ir, i = 1, 2

where xi and r,i are constant for the integral in (11), with r,i =
yi−xi

r .
3. Introducing the change of variable

r = z|y − x|, z ∈ [0, 1]

and substituting it in the straight-line radial integral in (11), we obtain

F (y) =

1∫
0

f(x1 + r,1rz, x2 + r,2rz)r
2zdz. (12)

Note, that the integral in (12) usually can be calculated analytically, but
in some cases, numerical integration is still required. So, at �rst, we need
to calculate (12) considering all changes of variables and then calculate (10).
Taking this into consideration the integrals (1)-(3) can be represented as follows

I1(x(t)) =
1

2π

∫
Γ

1

r

∂r

∂ν
(−r1ν1(x)− r2ν2(x))ds(y) =

=
1

2π

2π∫
0

S1(t, τ)dτ, t ∈ [0, 2π],

(13)

where

S1(t, τ) =



(x(τ)− x(t)) · ν(x(τ))((x(t)− x(τ)) · ν(x(t)))
|x(τ)− x(t)|2

|x′(τ)|

for t ̸= τ,

0 for t = τ ;

I2(x) =
1

2π

∫
Γ

1

r

∂r

∂ν

(
− r1

∂σ

∂x1
− r2

∂σ

∂x2

)
ds(y) =

=
1

2π

2π∫
0

S2(x, τ)dτ, x ∈ D,

(14)

where

S2(x, τ) =
(x(τ)− x) · ν(x(τ))((x− x(τ)) · ∇σ(x))

|x(τ)− x|2
|x′(τ)|;
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I3(x) =
1

2π

∫
Γ

1

r

∂r

∂ν

(1
4
(ln r2 − 1)

)
ds(y) =

1

2π

2π∫
0

S3(x, τ)dτ, x ∈ D (15)

with

S3(x, τ) = (x(τ)− x) · ν(x(τ))(0.25(ln(|x(τ)− x|2)− 1))|x′(τ)|.

At last, let us recall the calculation of double integrals I1, I2 and I3 as a
simpli�cation of integrals from the papers [3, 4] using the appropriate change
of variables with further application of quadratures.

We assume that Γ is star-shaped curve, so there is a one-to-one mapping
de�ned below

p(η, t) = (ηx1(t), ηx2(t)) : Π → D,

where Π = {(0, 0) ∪ (0, 1) × [0, 2π]} and Jacobian J(η, t) = η(x1(t)x
′
2(t) −

x2(t)x
′
1(t)). Therefore it is possible to parametrize the domain integrals via

change of variables y = p(ξ, τ) and x = p(η, t) with further integration over Π.
For I1 we have the following integrand

P̂s(t; ξ, τ) =
∂Ps(x(t), ξx(τ))

∂ν(x(t))
J(ξ, τ).

For I2 we have

R̃s(η, t; ξ, τ) = Rs(p(η, t), p(ξ, τ))J(ξ, τ).

The strong singularity in R̃ can be handled by applying the ideas from [12].

Using that approach, we can represent R̃s(η, t; η, τ) (see more details in [3]) in
the following form

R̃s(η, t; η, τ) = R̃(1)
s (η, t; η, τ) + R̃(2)

s (η, t; η, τ) cot
τ − t

2

with

R̃(1)
s (η, t; η, τ) =

1

η
(∇σ(ηx(t)) · ν(t))K1(t, τ)J(η, τ)

− 1

η|x′(t)|
(∇σ(ηx(t)) · θ(t))K2(t, τ)J(η, τ)

and

R̃(2)
s (η, t; η, τ) = − 1

2η|x′(t)|
(∇σ(ηx(t)) · θ(t))J(η, τ),

where functions K1,K2 are de�ned in [3].
Finally, for I3 we have

P̃s(η, t; ξ, τ) = Ps(p(η, t), p(ξ, τ))J(ξ, τ),

The function P̃s(η, t; ξ, τ) has a logarithmic singularity when η = ξ. Therefore,

P̃s(η, t; η, τ) can be rewritten (see [11]) as follows

P̃s(η, t; η, τ) = P̃ (1)
s (η, τ) ln

(4
e
sin2

t− τ

2

)
+ P̃ (2)

s (η, t; η, τ),
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where

P̃ (2)
s (η, t; η, τ) =


P̃ (1)
s (η, τ) ln

η2|x(t)− x(τ)|2
4
e sin

2 t−τ
2

, t ̸= τ,

P̃ (1)
s (η, t) ln(eη2|x′(t)|2), t = τ

with P̃ (1)
s (η, τ) =

1

2
J(η, τ). Having thses functions, corresponding quadraures

can be applied to each of integrals.

4. Numerical integration
For the numerical integration we apply the following interpolation quadrature

rules

1

2π

∫ 2π

0
f(τ) dτ ≈ 1

2n

2n−1∑
j=0

f(tj), (16)

1

2π

∫ 2π

0
f(τ) ln

(
4

e
sin2 t− τ

2

)
dτ ≈

2n−1∑
j=0

f(tj)Fj(t), (17)

1

2π

∫
Π

g(ξ, τ)dτdξ ≈ 1

2n

N∑
k=1

2n−1∑
j=0

αkg(ηk, tj), (18)

1

2π

∫
Π

g(ξ, τ) cot
τ − t

2
dτdξ ≈

N∑
k=1

2n−1∑
j=0

αkg(ηk, tj)Tj(t), (19)

1

2π

∫
Π

g(ξ, τ) ln

(
4

e
sin2 t− τ

2

)
dτdξ ≈

N∑
k=1

2n−1∑
j=0

αkg(ηk, tj)Fj(t) (20)

with quadrature weights αk ∈ R, quadrature points ηk ∈ (0, 1), k = 1, . . . , N

and tj =
jπ
n , j = 0, . . . , 2n− 1, and the weight functions

Fj(t) = − 1

2n

(
1 + 2

n−1∑
m=1

1

m
cosm(t− tj) +

1

n
cosn(t− tj)

)
,

Tj(t) = − 1

n

n−1∑
m=1

sinm(t− tj)−
1

2n
sinn(t− tj).

Note, that ηk are quadrature nodes of some open quadrature. We use a mid-
point rectangles quadrature with respect to the variable ξ, so αk = 1/N and
ηk = 0.5(2k − 1)/N for k = 1, . . . N. For 2π-periodic integrals we employ the
trapezoidal quadrature rule based on trigonometric interpolation with equidis-
tant points tj . For boundary integrals and their corresponding parameteriza-
tions we use formulas (16)-(17) while for double integrals we apply (18)-(20).
Thus for three methods, we have the following approximations:
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� The approach based on Green's theorem

I1(x(t)) ≈
2n−1∑
j=0

[
H

(1)
1 (t; tj)Fj(t) +

1

2n
H

(2)
1 (t, tj)

]
, t ∈ [0, 2π], (21)

I2(x) ≈
1

2n

2n−1∑
j=0

H2(x; tj), x ∈ D, (22)

I3(x) ≈
1

2n

2n−1∑
j=0

[
H

(1)
3 (x; tj) +H

(2)
3 (x; tj) +H

(3)
3 (x; tj)

]
, x ∈ D. (23)

� The RIM

I1(x(t)) ≈
1

2n

2n−1∑
j=0

S1(t; tj), t ∈ [0, 2π], (24)

I2(x) ≈
1

2n

2n−1∑
j=0

S2(x; tj), x ∈ D, (25)

I3(x) ≈
1

2n

2n−1∑
j=0

S3(x; tj), x ∈ D. (26)

� The quadratures-based approach

I1(x(t)) ≈
1

N

N∑
k=1

2n−1∑
j=0

P̂s(t; ηk, tj), t ∈ [0, 2π], (27)

I2(p(η, t)) ≈
1

N

N∑
k=1

2n−1∑
j=0

Rs(η, t; ηk, tj), (η, t) ∈ Π, (28)

I3(p(η, t)) ≈
1

N

N∑
k=1

2n−1∑
j=0

P s(η, t; ηk, tj), (η, t) ∈ Π, (29)

where

Rs(η, t; ηk, tj) =


1

2n
R̃s(η, t; ηk, tj) for η ̸= ηk,

1

2n
R̃(1)

s (η, t; ηk, tj) + Tj(t)R̃
(2)
s (η, t; ηk, tj) for η = ηk,

P s(η, t; ηk, tj) =


1

2n
P̃s(η, t; ηk, tj) for η ̸= ηk,

P̃ (1)
s (η, t; ηk, tj)Fj(t) +

1

2n
P̃ (2)
s (η, t; ηk, tj) for η = ηk.
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5. Numerical experiments

The numerical results for integrals I1, I2, I3 considering two di�erent domains
for each of them are presented. There will be provided numerical integration
results for the approach based on Green's theorem (see formulas (21)-(23)) and
straightforward calculation of double integrals based on the quadratures ap-
plication (formulas (27)-(29)). Using the RIM domain integrals are reduced to
boundary integrals and after parameterization are calculated using the formulas
(24)-(26).
Calculation of I1.
Example 1.1. Let the domain D is bounded by the circle with radius equals

1:

Γ = {x(t) = (cos(t), sin(t)), t ∈ [0, 2π]}.

Let's calculate I1(x) at point x = x∗ = (1, 0) in the Cartesian coordinate system
which in representation by the formula (5) corresponds to the parameter t = 0.

I1(x
∗) =

1

2π

∫∫
D

(1− y1)

(1− y1)2 + y22
dy1dy2 =

1

2
.

Applying the RIM we obtain the following boundary integral

I1(x
∗) =

1

2π

∫
Γ

1

r

∂r

∂ν
(−r1)ds(y).

In Table 1 absolute errors for di�erent discretization parameters n and N
are provided for three approaches: based on Green's theorem, the RIM and the
quadratures-based method for double integral calculation. Note, that only the
quadratures-based approach depends on both parameters.

For the �rst approach, the exponential rate of convergence is expected. The
RIM yields exact value of the integral for di�erent values of n, so the error
equals zero. For the last approach, convergence to the exact integral value is
not observed with respect to N in the case of the �xed n. If the parameter N
is �xed then n increasing decreases the error.
Example 1.2. The domain D is bounded by the curve Γ (see Fig. 1)

Γ = {x(t) = (cos(t), 1 + sin(t)− sin2(t)), t ∈ [0, 2π]},

Let's calculate I1(x) at point x = x∗ = (1, 1) that corresponds to the parameter
t = 0. As the exact value we take 0.4013072210380685.

For all three methods, the behaviour of the absolute errors in Table 2 is
similar to the Ex. 1.1. Therefore, according to these two examples, the most
e�cient method is the �rst one or the second one with the exponential rate of
convergence.
Calculation of I2.
Example 2.1 The boundary is the same as in Ex. 1.1, x∗ = (12 , 0) and

σ(x) = 2+x21+x22. Note that the exact integral value is 0.25 and x∗ = p(12 , 0).
The absolute errors are displayed in Table 3.
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Tabl. 1. Absolute errors for three methods for Ex. 1.1

n N Green′s RIM Quadratures
16 3 1.11E-16 0.00 8.15E-04

4 - - 3.09E-03
7 - - 1.37E-02
8 - - 1.71E-02
15 - - 3.52E-02

32 3 0.00 0.00 2.38E-06
4 - - 4.25E-05
7 - - 1.17E-03
8 - - 1.91E-03
15 - - 8.38E-03

64 3 2.22E-16 0.00 2.03E-11
4 - - 8.26E-09
7 - - 1.01E-05
8 - - 3.03E-05
15 - - 8.52E-04

Fig. 1. The domain D in Ex. 1.2

Example 2.2 Let the domainD (see Fig. 2) is de�ned by the Γ that provided
below

Γ = {x(t) = (2 cos(t), sin(t) + sin2(t)− 1), t ∈ [0, 2π]},
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Tabl. 2. Absolute errors for three methods for Ex. 1.2

n N Green′s RIM Quadratures
16 3 3.45E-09 9.57E-08 7.84E-03

4 - - 9.55E-04
7 - - 4.95E-03
8 - - 5.26E-03
15 - - 2.28E-03

32 3 1.89E-15 3.35E-14 7.80E-03
4 - - 1.69E-04
7 - - 7.41E-04
8 - - 1.27E-04
15 - - 3.70E-03

64 3 2.78E-16 3.89E-16 7.80E-03
4 - - 1.72E-04
7 - - 8.48E-04
8 - - 5.41E-04
15 - - 1.61E-04

Tabl. 3. Absolute errors for three methods for Ex. 2.1

n N Green′s RIM Quadratures
16 3 9.27E-12 1.75E-10 2.78E-02

4 - - 2.29E-04
7 - - 5.04E-03
8 - - 1.78E-03
15 - - 2.65E-04

32 3 5.55E-17 5.55E-17 2.78E-02
4 - - 1.94E-07
7 - - 5.10E-03
8 - - 5.37E-05
15 - - 1.09E-03

64 3 1.11E-16 1.66E-16 2.78E-02
4 - - 1.23E-13
7 - - 5.10E-03
8 - - 3.57E-08
15 - - 1.11E-03

Let σ(x) = e4x1x2 and x∗ = (0.5
√
3),−0.125) which means that (η, t) =

(0.5, π/6). As the exact value we take 0.063480913003424. The RIM boundary
integral is

I2(x
∗) =

1

2π

∫
Γ

1

r

∂r

∂ν
(0.5e−0.25

√
3r1 − 2

√
3e−0.25

√
3r2)ds(y).
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Fig. 2. The domain D in Ex. 2.2

Tabl. 4. Absolute errors for three methods for Ex. 2.2

n N Green′s RIM Quadratures
16 3 2.22E-06 7.35E-05 5.72E-02

4 - - 7.17E-03
7 - - 9.79E-03
8 - - 1.26E-02
15 - - 1.80E-03

32 3 1.08E-10 1.55E-09 5.76E-02
4 - - 1.84E-02
7 - - 5.51E-03
8 - - 6.25E-03
15 - - 6.85E-04

64 3 7.65E-15 7.34E-15 5.76E-02
4 - - 1.85E-02
7 - - 5.53E-03
8 - - 3.84E-03
15 - - 1.28E-03

For the RIM and the approach based on Green's theorem, the exponential
rate of convergence is observed. Regarding the last approach: with respect to
odd N values the convergence is present. It may be explained by the fact that
for odd N the quadrature point in (28) coincides with x∗ and the singularity is
handled.
Calculation of I3.
Example 3.1. The domain is the same as in Ex. 1.1. Let's calculate

I3(x) at point x = x∗ = (0.5, 0.5) in the Cartesian coordinate system and that
corresponds to the parameters η = 1√

2
, t = π

4 . The exact integral value is

−0.125. The numerical results presented in Table 5.
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Tabl. 5. Absolute errors for three methods for Ex. 3.1

n N Green′s RIM Quadratures
16 3 8.66E-04 5.76E-08 2.71E-03

4 - - 1.79E-03
7 - - 5.74E-04
8 - - 2.57E-03
15 - - 2.46E-03

32 3 1.93E-04 4.47E-13 2.66E-03
4 - - 1.68E-03
7 - - 3.17E-04
8 - - 1.37E-03
15 - - 9.52E-04

64 3 5.12E-05 1.39E-17 2.66E-03
4 - - 1.68E-03
7 - - 3.11E-04
8 - - 1.14E-03
15 - - 5.23E-04

Example 3.2. Let D is an ellipse with the boundary

Γ = {x(t) = (2 cos(t), sin(t)), t ∈ [0, 2π]}.
We calculate I3(x) at point x = x∗ = (0, 0.5) (x∗ = p(0.5, π2 )). As the exact
value we take −0.011201558293121.

Tabl. 6. Absolute errors for three methods for Ex. 3.2

n N Green′s RIM Quadratures
16 3 6.01E-03 3.15E-06 2.95E-02

4 - - 8.95E-03
7 - - 5.47E-03
8 - - 3.34E-03
15 - - 1.83E-03

32 3 1.51E-03 5.99E-10 2.95E-03
4 - - 8.53E-03
7 - - 5.29E-03
8 - - 2.17E-03
15 - - 1.18E-03

64 3 3.76E-04 2.65E-10 2.95E-03
4 - - 8.53E-03
7 - - 5.29E-03
8 - - 2.09E-03
15 - - 1.15E-03

Following the results in the last two examples, the best method for numerical
integration of I3 is the RIM and its exponential convergence after quadrature
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application. The approach based on Green's theorem is being converged as well
as the quadrature-based method, but not so fast as the RIM. Hence, the RIM
is the most e�ective approach to calculate the integral I3.

6. Conclusions
In this article, the numerical integration of singular double integrals based

on Green's theorem together with the RIM and quadratures-based method has
been considered. The numerical results for each of these three methods for
di�erent examples have been provided. As a conclusion, we can point out that
the advantage of the quadratures-based approach is that, in general, it can be
easily applied to the integrals with known and unknown integrands. However,
this method requires more calculations and the singularities should be handled
in a proper way. The main advantage in the RIM and in the approach that uses
Green's theorem is that we have a deal with a boundary integral and applying
appropriate quadrature rules to the integrals with smooth enough function it is
possible to achieve exponential convergence. Also, the RIM is applicable for any
countered curves and can be used for three-dimensional integrals. Numerical
integration in doubly connected domains or with unknown integrands may be
a theme for further investigation.
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