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ON THE NUMERICAL SOLUTION OF A MIXED
BOUNDARY VALUE PROBLEM FOR THE ELLIPTIC
EQUATION WITH VARIABLE COEFFICIENTS
IN DOUBLY CONNECTED PLANAR DOMAINS

A.V.BESHLEY

PE3IOME. Mu po3risigacMo 9ucesbHE PO3B’A3yBaHHS MIIMIAHOI 3ajadl I
eJIIITUYHOTO PIBHSIHHSA APYTOrO MOPSAKY 31 3MiHHMME KoedilieHTaMu y 1BO-
3B’a3Hiil obstacti. Po3B’s30K 33/1ad9i 1OIAETHCS Y BUTTIAAlL CyMU TOTEHITIATIB
3 HeBimoMumu rycruaamvu i dynknieo Jlesi y axocti aapa. IlincraBasioun
TIOJaHHS PO3B’sI3Ky B OCHOBHE PIBHSHHS Ta JIBi KPalOBi yMOBH, MU OTPUMYEMO
CHCTEMY IPAHUIHO-IIPOCTOPOBUX IHTErPAJIbHUX PIBHAHD. 3aMiHa 3MIHHUX IIPU-
BOIUTH JI0 TIAPAMETPU30BAHOI CHUCTEMHU, KA TPAHC(HOPMYETHCSI y CHCTEMY
JIHITHUX aJreOpUIHUX PIBHSHB ITC/Is 3aCTOCYBAHHS KBAJIPATYp Ta KOJIOKa-
mii ampoKCUMAIIHUX PIBHAHD y BiAmoOBiaHWX By3/iax. Hampukinimi HaBemeHO
JesKi 9rcesbHI Pe3yIbTaTH.

ABSTRACT. We consider a numerical solution of a mixed boundary value
problem for the second-order elliptic equation with variable coefficients in a
doubly connected domain. A solution of the problem is represented as a sum
of potentials with unknown densities and Levi function as a kernel. Substi-
tuting the solution representation in the main equation and two boundary
conditions we obtain a system of boundary-domain integral equations. The
change of variables leads to the parameterised system which is being trans-
formed in a system of linear algebraic equations after quadratures application
and collocation of the approximating equations at appropriate points. Some
numerical results are provided at the end.

1. INTRODUCTION

The elliptic differential equations with variable coefficients are widely spread
in many problems of mathematical physics. The coefficients presented in a
differential operator mostly correspond to the specific material parameters (for
instance, thermal, electrical or hydraulic conductivity) of a considered physical
process.

There are well-known effective methods (the boundary element method, the
boundary integral equation method) for solving problems defined in bounded
or infinite domains. The main advantage of these approaches is decreasing of
the dimension of the problem — the solution in a domain can be represented
using specific expression only over the boundary. However, in this case, a fun-
damental solution for a general differential operator is required. Unfortunately,
a fundamental solution, in general, is unknown for differential equations with
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variable coefficients or its finding can be quite complicated (in contrast to equa-
tions with constant coefficients). Therefore, efficient methods to solve such kind
of problems are welcomed.

One of the approaches that has been proposed for the numerical solution
of so-called the generalized Laplace equation [9] (a second-order linear elliptic
partial differential equation with variable coefficients) is described in [10]. The
main idea is to transform the starting equation with variable coefficients into a
constant-coefficient equation for which a fundamental solution is available and
then any of mentioned above effective methods can be applied. The first step
in the procedure is to avoid the first partial derivatives of the unknown func-
tion and next step is to approximate the transformed equation using constant
coefficients.

It is not mandatory to obtain the constant-coeflficient equation to solve the
problem. As an example, in [1] for solving a two-dimensional mixed problem
(where the Dirichlet condition prescribed on a part of the boundary and the
Neumann condition prescribed on the remaining part of the domain bound-
ary) with variable coefficients a special function (parametrix) has been used in
the Green formula to reduce the initial boundary value problem to a boundary-
domain integral equation or boundary-domain integro-differential-equation with
the following discretisation of the domain and application of the collocation
method. Another similar technique for solving this problem, but with using
the radial integration method [5], has been proposed in [2]. The radial in-
tegration method was employed to convert domain integrals into equivalent
boundary integrals.

In this paper, we consider the numerical solution of a mixed boundary value
problem in a doubly connected domain where the Neumann condition is defined
on the outer boundary, meanwhile as the Dirichlet condition prescribed on the
inner boundary.

Let Dy be a simple bounded domain in R? with boundary I'y € C?. Let
D_1 be a domain bounded by curve I'_y € C? and D_; C Dy. We define
that D = Do\ D_1. We consider the following mixed boundary value problem
in the doubly connected planar domain D for elliptic equation with variable
coefficients: need to find function v € H'(D) that satisfies the differential
equation

Lu(z) = div(o(z) gradu(z)) =0, x € D, (1)
the Dirichlet condition on I'_4

u=f1 on '3 (2)

and the Neumann condition on I'g

0
Ua—z = fo on T. (3)
Here, 0 € C®(D), 0 > 0, f1, f2 are known functions and v is the outward unit
normal to the boundary.
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This problem can be interpreted as a stationary heat transfer problem in an
isotropic medium for a two-dimensional bounded body with prescribed tem-
perature and heat flux on different boundaries. Since the main equation is
homogeneous we assume that a heat source is not available. The function o(z),
in this case, is a known thermal conductivity.

For the outline of the work, in Section 2, we reduce our differential problem
to a system of boundary-domain integral equations, obtain an equivalent sys-
tem in a parameterised form and split singularities from some kernels. A full
discretisation of the system with applied quadratures and approximation for-
mula of the solution in a domain are presented in Section 3. In Section 4, two
numerical examples for different domain configurations are considered. Some
conclusions are given in Section 5.

2. REDUCTION TO A SYSTEM OF BOUNDARY-DOMAIN INTEGRAL EQUATIONS

As it was mentioned above, there is no ability to reduce the problem to a
boundary integral equation as a fundamental solution is not available in the
explicit form, in general case, for elliptic equations with variable coefficients.
But, we can use a parametrix to work only with integrals instead of the differ-
ential equation and boundary conditions, however, it leads to domain integrals
appearing. A parametrix (or Levi function) P(z,y), =,y € R? should satisfy
the following expression [§]

Ly P(z,y) = 6(z —y) + R(z,y), (4)
where ¢ is the Dirac function and the remainder function R has a weak singu-
larity for x = y. In the two-dimensional case we can define the parametrix as
the fundamental solution with frozen coefficients a(x) = a(y) corresponding to
the operator L, i.e., in the form

_Injz —y

P == < R?
(z,y) 2m0) T,y eR* x#y

with the remainder function
Riz,y) = (r—vy)- grada(zx)
2mo(y)|z -y
It is not difficult to verify that functions P(z,y) and R(x,y) satisfy (4).
Should note that the parametrix function is not unique.
We seek the solution as a sum of potentials, but instead of the fundamental
solution of the differential operator we use the Levi function

u(z) = / by Pla,y) dy + / by (9) Pl y) ds(y)+
D | Y

, myeR® z#y.

(5)
4 / Go)P(z,y) ds(y), € D,
1)

where ¢ € C(D), ¢—1 € C(I'-1) and g € C(I'g) are unknown densities.
Substituting (5) in (1)-(3) we obtain the following system of a boundary-
domain integral equations
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/w(y)P(a?,y)der /w—l(y)P(rc,y)dS(yH

D J Y
+/1/}0(y)P(I‘,y) dS(y) = fl(‘r)? T c F—L (6)
o
~gona)+ [ vt 2 dy
D
# [ o ast)+
Ty
+ [unto@ 5 dst) = fo). aeto
To

If o(x) =1 then the density ¢(x) vanishes (together with domain integrals)
and the system is being simplified to a system of boundary integral equations
that correspond to the Laplace equation. The similar system for this case can
be found in [4].

Let D is symmetric relative to the origin and assume that the closed bound-
ary curves I'g, I'_; are homothetic with factor £_; and have the following
representations

= {x(t) = (21(t), z2(1)), t € [0,27)},

Iy = {21 (t) = (Era1 (1), Erma(®)), £ € [0,27)), ")

where £_1 is a fixed parameter and 0 < £_7 < 1. To obtain the system in the
parametrized form we use the change of variables in the integrals over domain
in (6)

y1 = p1(§,7) = a1 (1),

yo = p2(&,7) = aa(T),

where (§,7) € II = (£-1,1) x [0,27) and Jacobian J(§,7) = &(z1(7)2h(T) —
xo(7)z (7). The notation p = (p1,p2) is used for the function mapping into
II.
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This yields the following system

/

o0, 1)+ 5= / (€. T)R(n. :6.7) drdg+
/80151, 1(n, t;€-1,7) dT+
+2i po(r) Boin, ;) dr =0, (1,1) €L,
T
0
21/ P(é_y 1€, 7) drdé+
t 21
+217r/90—1(5—1,T)P—1(§—1,t;§—1,7’) dr+ 8)
1 027r
tor [ @R tir)dr = Fi€r.), t € 0,2m),
0
—se0®) + 5 [ wle P €, 7) drde+
" 2w
+217r/ (€1, T)Poy (b6, 7) drt
0
21
+21/g00(7')ﬁ0(t; T)dT = fé(t), t €10,2m),
T
0
with the functions ¢(n,t) = ¥ (p(n,1)), p-1(t) = Y-1(z(t)), @o(t) = Yo(x(1)),

fi(t) = fi(z_1(1), fot) = fo(x(t)) and kernels
R(n,t;€,7) = 2rR(p(n, t), p(&, 7)) J (£, 7),
Ro(n,t;7) = 20 R(p(n, t), (7)) |2’ (1)];
P61, t:€,7) = 20 P(Eqa(t), p(&, 7)) T (€, 7).
Pyt tir) = 27TP(§ 1:c< ), z(7))|a’ ()];
)

Plts€,7) = 2ro(a(t) 2 G Len (€, 7).
By(tir) = 2m<x<t>>Wrm'<T>|;

Roa(n,t;6-1,7) = 2 R(p(n, 1), §12(7))§ 1|2 (7)];
P_y(§-1,t:€-1,7) = 20P(§o1a(t), €12 (7))E-1]a! (7)];
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P(z(t), §-12(7))
O (x(t))

Exploring the kernels it is easy to see that the kernels R and P_; have different
singularities. The strong singularity in R can be handled by applying the ideas
from [7] (for more details see [3]). The logarithmic singularity in the kernel P_;
can be split [6] as follows

P_i(t;&-4,7) = 27?0(:1:(75))8 E 4|2/ ().

entiean) = PO L s ST PO L ng ) ()

with
5y 1y - L &l ()]
T = 5 ()
and
1 ’5—1-7661) 2§t 1}'( )| for t4T,
Py Sl | 2T
AT A I
iln(e|£,1x'(t)|2) for t=r.

3. FULL DISCRETISATION AND NUMERICAL SOLUTION OF THE SYSTEM

For solving the system (8) we use the interpolation quadrature rules for
continuous integrands and integrands with weight function that corresponds to
the specific singularity. For continuous integrands we use

N 2n—1

/ (€ r)drde ~ o= 37> anglmto), (10)
k=1 =0
1 gﬂ- 2n—1

o ), Z f(tx (11)

The following quadratures are used for 1ntegrals with strong and logarithmic
singularities

1 N 2n—1
5 | 9 eot T Larde ~ 30 Y anglme t)Ti(0), (12)
I k=1 i=0
1 4 2n—1
.2
o f( ) In <esm >dT~ > ftr) Fr(t (13)
k=0
In formulas (10), (13) oy € R? are quadrature weights, n, € (0,1), k =
1,..., N — some quadrature points. For 2m-periodic integrals we employ the

trapezoidal quadrature rule based on trigonometric interpolation with equidis-
tant points t; = iw/n, i =0,...2n—1, n € N. The weight functions 7;(¢) and
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Fy(t) are defined as follows

1
T;(t) = _ﬁ sinm(t — t;) —smn(t—t)
1 = 1 1
Fi(t) = ~5- <1+22 mcosm(t—tk)+ncosn(t—tk)>.
m=1

The use of these quadratures in (8) and collocation of the approximating equa-
tions at quadrature points lead to the linear system

N 2n—1

k=1 j=0
2n—1

"‘7 Z w— 1] nmytza§ 1.t )+

2n1

7=0
2n—1 2n—1

> aror P, tis i, 1) t5, > wojPo(€r tinty)+
j=0 7=0

1 N
%Z
N (14)

j=

; <P1j[ Ve t)F (1) + - PO bt ﬂ:fu,
0

1. 1 N 2n—1

—5P0i T 5o Z ks P (tis iy )+
k=1 j=0
1 2n—1

o Z o171 (ti €1, 1)+
7=0
2n—1

+% z(:) wo;Po(ti, t;) = fo,
]:

with

1 ~
%R(nmvtﬂnkat]‘) for m #k,
for =k,
and the right-hand side fi; = fl( ;) and fai = f2( i)

Here, we use the following notation ¢mi ~ ©(Nm,ti), v—1; = ¢—_1(t;) and

woi = po(t;) form=1,...,Nand ¢ =0,...,2n — 1. The kernels RM and R®
are smooth functions and their representations are provided in [3].
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Solving the system (14) we obtain the approximate values of unknown densi-
ties. Having these values we can find the approximation of the solution (1)-(3)
in the domain D using the following formula

N 2n—1

U ti) = 3 D kP Py tis s )+
k=1 j=0
1 2n—1 »
o D o 1P tiéornty)+ (15)
=0
2n—1 _
+o. Z ©0; Po (1 tis t5),
7=0
with

1 ~
%P(nmatﬁnkytj) for m #k,

P, tis i, ) = =) 1 50
P (0 tis i, 1) F (t5) + %P (D tis Mk, L)
for m ==k,

where f’(l)(nm,ti;nk,tj), P (1, ti3mk, t;) smooth enough functions.

4. NUMERICAL EXPERIMENTS

In this section, we present some numerical results for two different examples.

Together with the approximation of solution in the domain, we will provide

numerical results for approximations of the normal derivative on I'_; (taking

into account the jump relations of the single-layer potential normal derivative
[6]) and the trace of the solution on I'y

g,lj(x):—w /w d +/z/1 ))ds(y)+
+/¢o(y)wds(y), zel_y,

_ / (o) Plo,y) dy + / Y1 (y) Pla,y) ds(y)+
.1

/wo P(z,y)ds(y), =z ¢€Ty.

Example 1. Let the domain D (see Fig. 1) is bounded by the two circles:
Iy = {z(t) = (1.2 cos(t), 1.2sin(t)), t € [0,2m)},
'y ={z_1(t) = (0.6 cos(t),0.6sin(t)), t € [0,27)}.

Here we have £_1 = 0.5. The function o is given and equal

10
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Fi1G. 1. The solution domain D in Ex.1

o(z) =4 — 22 + 23,

reD.

Let us choose the boundary functions fi and fo of the elliptic problem as

fo =0.6z129(4 — 22 +23) on Ty.

fi = 2129

on F_l,

Easy to verify that ue, = x122 is the exact solution to (1)-(3).
In (10),(12) we use the midpoint quadrature as a quadrature rule with respect

to & € (€-1,1) with weights ay
@2k —1), k=1,...,N.

_ 1€
N

and quadrature nodes n; =

1 —

TABL. 1. Absolute error on inner curves fl—fg for Ex. 1

N n HuNn_uexHoo I |unn _uez’Hoo Iy |unn _uez’Hoo s
31 32 2.33E-05 6.64E-05 1.31E-04
64 8.86E-08 2.52E-07 5.47E-07
6| 64 1.16E-05 3.45E-05 7.51E-05
128 4.97E-08 1.47E-07 3.21E-07
12 | 128 5.80E-06 1.76 E-05 3.85E-05
256 2.63E-08 7.97E-08 1.74E-07

We will provide the numerical error of the proposed approach on three curves
within the domain that are homothetic to the outer boundary and have the
following parametric representations

16,

Ty &= (61 + (12k — 5))z(t), t€[0,27), k=1,2,3. (16)

40
Straightforward calculation gives that homothetic factors related to the curves
Ty, Te, T's are 0.5875, 0.7375 and 0.8875 respectively. They correspond to the
4th, 10th, 16th curve counting from the first inner curve after I'_; in case when

11
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discretisation parameter N = 20. The absolute errors for different discretisation
parameters N and n are presented in Table 1.

TABL. 2. Absolute error of the normal derivative and the func-
tion on boundaries and relative error in D for Ex. 1

N n Ha?ﬂ# - %Hooylﬂ—l |unn — ez loo,rg % -100%
31 32 3.09E-04 1.03E-04 1.455
64 1.17E-06 3.38E-07 0.271
6| 64 1.89E-04 5.67E-05 0.270
128 8.08E-07 2.53E-06 0.025
12 | 128 1.05E-04 3.37E-04 0.277
256 4.73E-07 7.98E-07 0.276

In Table 2 we present the absolute errors of the normal derivative on the
I'_; and the solution on the I'g together with relative errors with respect to the
Lo-norm in the domain D for the same parameters N and n as in Table 1. To
calculate the relative error in the domain we use the following approximation
with N = 20 and 7 = 32

5 1/2
Z (uNn _uex)Q(ﬁkvgj)J<ﬁkat~j)
lunn — uea?HLz(D) | k=1 4=0

[tea | Lo (D) N o . - -
Z ue:v(nkﬂtj)‘](nkvtj)

a). exact solution b). approximate solution

Fic. 2. Exact solution and numerical approximation in domain D for Ex. 1

The numerical approximation (for discretisation parameters N = 6, n = 64)
and the exact solution in the domain D are shown in Fig. 2. From the numerical
results, we see that parameters N and n are linked between each other — double
increase N requires to increase the parameter n at least by two times to decrease

12
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the error. But, in general, presented relative errors in the domain look pretty
good as well as absolute errors on inner curves.

Example 2. Let the domain D (see Fig. 3) bounded by the two ellipses:

To = {z(t) = (acos(t),bsin(t)), t € [0,27)},
I' 1 ={z_1(t) = (0.4acos(t),0.4bsin(t)), t € [0,2m)}.

r

Fi1G. 3. The solution domain D in Ex.2

TABL. 3. Absolute error on inner curves fl—fg for Ex.2

N n HuNn—uexHoo I |unn _ue:r”oo Iy |unn _Ue:r”oo s
3| 32 3.92E-04 9.38E-04 3.07E-03
64 3.28E-06 1.05E-05 3.76E-05
6| 64 2.16E-04 5.30E-04 1.05E-03
128 1.99E-06 6.24E-06 1.63E-05
12 | 128 1.18E-04 2.82E-04 5.46E-04
256 1.14E-06 3.47E-06 8.72E-06

TABL. 4. Absolute error of the normal derivative and the func-
tion on boundaries and relative error in D for Ex. 2

N n H% - 8351 ||oo,1"71 Hﬂ - uex”oo,l"g W . 100%
3] 32 9.60E-03 7.67E-02 1.695
64 3.10E-05 1.59E-04 0.377
6| 64 4.07E-03 2.99E-02 0.377
128 2.65E-05 1.02E-04 0.052
12 | 128 2.43E-03 5.54E-02 0.094
256 1.72E-05 8.45E-04 0.077

13
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Here we have parameters a = 2, b = 1 and £_; = 0.4. The function ¢ has
following representation

o(x) =8+ 2zx122, z€D.
The boundary functions f; and fo are known
fi=at—22 onT_ 1, fo= (8+2x1m9)(x? —423)(0.252% +423)7%5 on Iy.

For this example, the exact solution is ue; = 23 — 3.

,....
7R
22225
XA
SR

SoS

7

i
il
i

a). exact solution b). approximate solution

Fic. 4. Exact solution and numerical approximation in domain D for Ex. 2

The absolute errors on inner curves (16) are shown in Table 3. Similarly to
the Ex. 1., the relative error of the solution in domain D, the absolute errors
of its normal derivative on the inner boundary I'_; and the solution error on
the outer boundary I'g are displayed in Table 4. In Fig. 4 the exact solution in
the domain D and its approximation for discretisation parameters N = 6 and
n = 128 are shown. Observing the results we can see the same high accuracy
of the obtained approximation of the solution as in Ex. 1.

5. CONCLUSION

An indirect integral equation method (based on the solution representation
via potentials with densities and using the Levi function) for the numerical so-
lution of a mixed boundary value problem for the generalized Laplace equation
in doubly connected domains was applied. The differential problem is reduced
to a system of boundary-domain integral equations. As a doubly connected do-
main, a domain bounded by two homothetic curves is considered. The change
of variables in double integrals, quadrature rules application and the collocation
of the obtained approximating equations at quadrature nodes lead to a system
of the linear equations. Having calculated approximate values of the unknown
densities we can find the approximation of the solution in the domain. Appli-
cability of the proposed approach is confirmed by provided numerical results.

14
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