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Ðåçþìå. Ìè ðîçãëÿäà¹ìî ÷èñåëüíå ðîçâ'ÿçóâàííÿ ìiøàíî¨ çàäà÷i äëÿ
åëiïòè÷íîãî ðiâíÿííÿ äðóãîãî ïîðÿäêó çi çìiííèìè êîåôiöi¹íòàìè ó äâî-
çâ'ÿçíié îáëàñòi. Ðîçâ'ÿçîê çàäà÷i ïîäà¹òüñÿ ó âèãëÿäi ñóìè ïîòåíöiàëiâ
ç íåâiäîìèìè ãóñòèíàìè i ôóíêöi¹þ Ëåâi ó ÿêîñòi ÿäðà. Ïiäñòàâëÿþ÷è
ïîäàííÿ ðîçâ'ÿçêó â îñíîâíå ðiâíÿííÿ òà äâi êðàéîâi óìîâè, ìè îòðèìó¹ìî
ñèñòåìó ãðàíè÷íî-ïðîñòîðîâèõ iíòåãðàëüíèõ ðiâíÿíü. Çàìiíà çìiííèõ ïðè-
âîäèòü äî ïàðàìåòðèçîâàíî¨ ñèñòåìè, ÿêà òðàíñôîðìó¹òüñÿ ó ñèñòåìó
ëiíiéíèõ àëãåáðè÷íèõ ðiâíÿíü ïiñëÿ çàñòîñóâàííÿ êâàäðàòóð òà êîëîêà-
öi¨ àïðîêñèìàöiéíèõ ðiâíÿíü ó âiäïîâiäíèõ âóçëàõ. Íàïðèêiíöi íàâåäåíî
äåÿêi ÷èñåëüíi ðåçóëüòàòè.
Abstract. We consider a numerical solution of a mixed boundary value
problem for the second-order elliptic equation with variable coe�cients in a
doubly connected domain. A solution of the problem is represented as a sum
of potentials with unknown densities and Levi function as a kernel. Substi-
tuting the solution representation in the main equation and two boundary
conditions we obtain a system of boundary-domain integral equations. The
change of variables leads to the parameterised system which is being trans-
formed in a system of linear algebraic equations after quadratures application
and collocation of the approximating equations at appropriate points. Some
numerical results are provided at the end.

1. Introduction
The elliptic di�erential equations with variable coe�cients are widely spread

in many problems of mathematical physics. The coe�cients presented in a
di�erential operator mostly correspond to the speci�c material parameters (for
instance, thermal, electrical or hydraulic conductivity) of a considered physical
process.

There are well-known e�ective methods (the boundary element method, the
boundary integral equation method) for solving problems de�ned in bounded
or in�nite domains. The main advantage of these approaches is decreasing of
the dimension of the problem � the solution in a domain can be represented
using speci�c expression only over the boundary. However, in this case, a fun-
damental solution for a general di�erential operator is required. Unfortunately,
a fundamental solution, in general, is unknown for di�erential equations with

Key words. Elliptic equation with variable coe�cients, mixed boundary value problem,
parametrix, boundary-domain integral equations, quadrature formulas.
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variable coe�cients or its �nding can be quite complicated (in contrast to equa-
tions with constant coe�cients). Therefore, e�cient methods to solve such kind
of problems are welcomed.

One of the approaches that has been proposed for the numerical solution
of so-called the generalized Laplace equation [9] (a second-order linear elliptic
partial di�erential equation with variable coe�cients) is described in [10]. The
main idea is to transform the starting equation with variable coe�cients into a
constant-coe�cient equation for which a fundamental solution is available and
then any of mentioned above e�ective methods can be applied. The �rst step
in the procedure is to avoid the �rst partial derivatives of the unknown func-
tion and next step is to approximate the transformed equation using constant
coe�cients.

It is not mandatory to obtain the constant-coe�cient equation to solve the
problem. As an example, in [1] for solving a two-dimensional mixed problem
(where the Dirichlet condition prescribed on a part of the boundary and the
Neumann condition prescribed on the remaining part of the domain bound-
ary) with variable coe�cients a special function (parametrix) has been used in
the Green formula to reduce the initial boundary value problem to a boundary-
domain integral equation or boundary-domain integro-di�erential-equation with
the following discretisation of the domain and application of the collocation
method. Another similar technique for solving this problem, but with using
the radial integration method [5], has been proposed in [2]. The radial in-
tegration method was employed to convert domain integrals into equivalent
boundary integrals.

In this paper, we consider the numerical solution of a mixed boundary value
problem in a doubly connected domain where the Neumann condition is de�ned
on the outer boundary, meanwhile as the Dirichlet condition prescribed on the
inner boundary.

Let D0 be a simple bounded domain in R2 with boundary Γ0 ∈ C2. Let
D−1 be a domain bounded by curve Γ−1 ∈ C2 and D−1 ⊂ D0. We de�ne
that D = D0 \D−1. We consider the following mixed boundary value problem
in the doubly connected planar domain D for elliptic equation with variable
coe�cients: need to �nd function u ∈ H1(D) that satis�es the di�erential
equation

Lu(x) = div(σ(x) gradu(x)) = 0, x ∈ D, (1)

the Dirichlet condition on Γ−1

u = f1 on Γ−1 (2)

and the Neumann condition on Γ0

σ
∂u

∂ν
= f2 on Γ0. (3)

Here, σ ∈ C∞(D), σ > 0, f1, f2 are known functions and ν is the outward unit
normal to the boundary.
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This problem can be interpreted as a stationary heat transfer problem in an
isotropic medium for a two-dimensional bounded body with prescribed tem-
perature and heat �ux on di�erent boundaries. Since the main equation is
homogeneous we assume that a heat source is not available. The function σ(x),
in this case, is a known thermal conductivity.

For the outline of the work, in Section 2, we reduce our di�erential problem
to a system of boundary-domain integral equations, obtain an equivalent sys-
tem in a parameterised form and split singularities from some kernels. A full
discretisation of the system with applied quadratures and approximation for-
mula of the solution in a domain are presented in Section 3. In Section 4, two
numerical examples for di�erent domain con�gurations are considered. Some
conclusions are given in Section 5.

2. Reduction to a system of boundary-domain integral equations
As it was mentioned above, there is no ability to reduce the problem to a

boundary integral equation as a fundamental solution is not available in the
explicit form, in general case, for elliptic equations with variable coe�cients.
But, we can use a parametrix to work only with integrals instead of the di�er-
ential equation and boundary conditions, however, it leads to domain integrals
appearing. A parametrix (or Levi function) P (x, y), x, y ∈ R2 should satisfy
the following expression [8]

LxP (x, y) = δ(x− y) + R(x, y), (4)
where δ is the Dirac function and the remainder function R has a weak singu-
larity for x = y. In the two-dimensional case we can de�ne the parametrix as
the fundamental solution with frozen coe�cients a(x) = a(y) corresponding to
the operator L, i.e., in the form

P (x, y) =
ln |x− y|
2πσ(y)

, x, y ∈ R2, x 6= y

with the remainder function

R(x, y) =
(x− y) · gradσ(x)

2πσ(y)|x− y|2 , x, y ∈ R2 x 6= y.

It is not di�cult to verify that functions P (x, y) and R(x, y) satisfy (4).
Should note that the parametrix function is not unique.

We seek the solution as a sum of potentials, but instead of the fundamental
solution of the di�erential operator we use the Levi function

u(x) =
∫

D

ψ(y)P (x, y) dy +
∫

Γ−1

ψ−1(y)P (x, y) ds(y)+

+
∫

Γ0

ψ0(y)P (x, y) ds(y), x ∈ D,

(5)

where ψ ∈ C(D), ψ−1 ∈ C(Γ−1) and ψ0 ∈ C(Γ0) are unknown densities.
Substituting (5) in (1)-(3) we obtain the following system of a boundary-
domain integral equations
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ψ(x) +
∫

D

ψ(y)R(x, y) dy +
∫

Γ−1

ψ−1(y)R(x, y) ds(y)+

+
∫

Γ0

ψ0(y)R(x, y) ds(y) = 0, x ∈ D,

∫

D

ψ(y)P (x, y) dy +
∫

Γ−1

ψ−1(y)P (x, y) ds(y)+

+
∫

Γ0

ψ0(y)P (x, y) ds(y) = f1(x), x ∈ Γ−1,

−1
2
ψ0(x) +

∫

D

ψ(y)σ(x)
∂P (x, y)
∂ν(x)

dy+

+
∫

Γ−1

ψ−1(y)σ(x)
∂P (x, y)
∂ν(x)

ds(y)+

+
∫

Γ0

ψ0(y)σ(x)
∂P (x, y)
∂ν(x)

ds(y) = f2(x), x ∈ Γ0.

(6)

If σ(x) = 1 then the density ψ(x) vanishes (together with domain integrals)
and the system is being simpli�ed to a system of boundary integral equations
that correspond to the Laplace equation. The similar system for this case can
be found in [4].

Let D is symmetric relative to the origin and assume that the closed bound-
ary curves Γ0, Γ−1 are homothetic with factor ξ−1 and have the following
representations

Γ0 = {x(t) = (x1(t), x2(t)), t ∈ [0, 2π)},
Γ−1 = {x−1(t) = (ξ−1x1(t), ξ−1x2(t)), t ∈ [0, 2π)}, (7)

where ξ−1 is a �xed parameter and 0 < ξ−1 < 1. To obtain the system in the
parametrized form we use the change of variables in the integrals over domain
in (6)

y1 = p1(ξ, τ) = ξx1(τ),

y2 = p2(ξ, τ) = ξx2(τ),

where (ξ, τ) ∈ Π = (ξ−1, 1) × [0, 2π) and Jacobian J(ξ, τ) = ξ(x1(τ)x′2(τ) −
x2(τ)x′1(τ)). The notation p = (p1, p2) is used for the function mapping into
Π.
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This yields the following system




ϕ(η, t) +
1
2π

∫

Π

ϕ(ξ, τ)R̃(η, t; ξ, τ) dτdξ+

+
1
2π

2π∫

0

ϕ−1(ξ−1, τ)R̃−1(η, t; ξ−1, τ) dτ+

+
1
2π

2π∫

0

ϕ0(τ)R̃0(η, t; τ) dτ = 0, (η, t) ∈ Π,

1
2π

∫

Π

ϕ(ξ, τ)P̌ (ξ−1, t; ξ, τ) dτdξ+

+
1
2π

2π∫

0

ϕ−1(ξ−1, τ)P̌−1(ξ−1, t; ξ−1, τ) dτ+

+
1
2π

2π∫

0

ϕ0(τ)P̌0(ξ−1, t; τ) dτ = f̃1(ξ−1, t), t ∈ [0, 2π),

−1
2
ϕ0(t) +

1
2π

∫

Π

ϕ(ξ, τ)P̂ (t; ξ, τ) dτdξ+

+
1
2π

2π∫

0

ϕ−1(ξ−1, τ)P̂−1(t; ξ−1, τ) dτ+

+
1
2π

2π∫

0

ϕ0(τ)P̂0(t; τ) dτ = f̃2(t), t ∈ [0, 2π),

(8)

with the functions ϕ(η, t) = ψ(p(η, t)), ϕ−1(t) = ψ−1(x(t)), ϕ0(t) = ψ0(x(t)),
f̃1(t) = f1(x−1(t)), f̃2(t) = f2(x(t)) and kernels

R̃(η, t; ξ, τ) = 2πR(p(η, t), p(ξ, τ))J(ξ, τ),

R̃0(η, t; τ) = 2πR(p(η, t), x(τ))|x′(τ)|;
P̌ (ξ−1, t; ξ, τ) = 2πP (ξ−1x(t), p(ξ, τ))J(ξ, τ),

P̌0(ξ−1, t; τ) = 2πP (ξ−1x(t), x(τ))|x′(τ)|;

P̂ (t; ξ, τ) = 2πσ(x(t))
∂P (x(t), ξx(τ))

∂ν(x(t))
J(ξ, τ),

P̂0(t; τ) = 2πσ(x(t))
∂P (x(t), x(τ))

∂ν(x(t))
|x′(τ)|;

R̃−1(η, t; ξ−1, τ) = 2πR(p(η, t), ξ−1x(τ))ξ−1|x′(τ)|;
P̌−1(ξ−1, t; ξ−1, τ) = 2πP (ξ−1x(t), ξ−1x(τ))ξ−1|x′(τ)|;
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P̂−1(t; ξ−1, τ) = 2πσ(x(t))
∂P (x(t), ξ−1x(τ))

∂ν(x(t))
ξ−1|x′(τ)|.

Exploring the kernels it is easy to see that the kernels R̃ and P̌−1 have di�erent
singularities. The strong singularity in R̃ can be handled by applying the ideas
from [7] (for more details see [3]). The logarithmic singularity in the kernel P̌−1

can be split [6] as follows

P̌−1(ξ−1, t; ξ−1τ) = P̌
(1)
−1 (ξ−1, τ) ln

4
e

sin2 t− τ

2
+ P̌

(2)
−1 (ξ−1, t; ξ−1τ) (9)

with

P̌
(1)
−1 (t, τ) =

1
2

ξ−1|x′(τ)|
σ(ξ−1x(τ))

,

and

P̌
(2)
−1 (t, τ) =

ξ−1|x′(τ)|
σ(ξ−1x(τ))





1
2

ln
|ξ−1x(t)− ξ−1x(τ)|2

4
e sin2 t−τ

2

for t 6= τ,

1
2

ln
(
e|ξ−1x

′(t)|2) for t = τ.

3. Full discretisation and numerical solution of the system
For solving the system (8) we use the interpolation quadrature rules for

continuous integrands and integrands with weight function that corresponds to
the speci�c singularity. For continuous integrands we use

1
2π

∫

Π

g(ξ, τ)dτdξ ≈ 1
2n

N∑

k=1

2n−1∑

i=0

αkg(ηk, ti), (10)

1
2π

∫ 2π

0
f(τ) dτ ≈ 1

2n

2n−1∑

k=0

f(tk). (11)

The following quadratures are used for integrals with strong and logarithmic
singularities

1
2π

∫

Π

g(ξ, τ) cot
τ − t

2
dτdξ ≈

N∑

k=1

2n−1∑

i=0

αkg(ηk, ti)Ti(t), (12)

1
2π

∫ 2π

0
f(τ) ln

(
4
e

sin2 t− τ

2

)
dτ ≈

2n−1∑

k=0

f(tk) Fk(t), (13)

In formulas (10), (13) αk ∈ R2 are quadrature weights, ηk ∈ (0, 1), k =
1, . . . , N � some quadrature points. For 2π-periodic integrals we employ the
trapezoidal quadrature rule based on trigonometric interpolation with equidis-
tant points ti = iπ/n, i = 0, . . . 2n− 1, n ∈ N. The weight functions Ti(t) and
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Fk(t) are de�ned as follows

Ti(t) = − 1
n

n−1∑

m=1

sinm(t− ti)− 1
2n

sinn(t− ti),

Fk(t) = − 1
2n

(
1 + 2

n−1∑

m=1

1
m

cosm(t− tk) +
1
n

cosn(t− tk)

)
.

The use of these quadratures in (8) and collocation of the approximating equa-
tions at quadrature points lead to the linear system





ϕmi +
N∑

k=1

2n−1∑

j=0

αkϕkjR̄(ηm, ti; ηk, tj)+

+
1
2n

2n−1∑

j=0

ϕ−1jR̃−1(ηm, ti; ξ−1, tj)+

+
2n−1∑

j=0

ϕ0jR̃0(ηm, ti; tj) = 0,

1
2n

N∑

k=1

2n−1∑

j=0

αkϕkjP̌ (ξ−1, ti; ηk, tj) +
1
2n

2n−1∑

j=0

ϕ0jP̌0(ξ−1, ti, tj)+

+
2n−1∑

j=0

ϕ−1j

[
P̌

(1)
−1 (ξ−1, tj)Fj(ti) +

1
2n

P̌
(2)
−1 (ξ−1, ti; ξ−1, tj)

]
= f̃1i,

−1
2
ϕ̃0i +

1
2n

N∑

k=1

2n−1∑

j=0

αkϕkjP̂ (ti; ηk, tj)+

+
1
2n

2n−1∑

j=0

ϕ−1jP̂−1(ti; ξ−1, tj)+

+
1
2n

2n−1∑

j=0

ϕ0jP̂0(ti, tj) = f̃2i,

(14)

with

R̄(ηm, ti; ηk, tj) =





1
2n

R̃(ηm, ti; ηk, tj) for m 6= k,

1
2n

R̃(1)(ηm, ti; ηk, tj) + Tj(t)R̃(2)(ηm, ti; ηk, tj)
for m = k,

and the right-hand side f̃1i = f̃1(ti) and f̃2i = f̃2(ti).
Here, we use the following notation ϕmi ≈ ϕ(ηm, ti), ϕ−1i ≈ ϕ−1(ti) and

ϕ0i ≈ ϕ0(ti) for m = 1, . . . , N and i = 0, . . . , 2n− 1. The kernels R̃(1) and R̃(2)

are smooth functions and their representations are provided in [3].
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Solving the system (14) we obtain the approximate values of unknown densi-
ties. Having these values we can �nd the approximation of the solution (1)-(3)
in the domain D using the following formula

u(ηm, ti) ≈
N∑

k=1

2n−1∑

j=0

αkϕkjP (ηm, ti; ηk, tj)+

+
1
2n

2n−1∑

j=0

ϕ−1jP̃−1(ηm, ti; ξ−1, tj)+

+
1
2n

2n−1∑

j=0

ϕ0jP̃0(ηm, ti; tj),

(15)

with

P (ηm, ti; ηk, tj) =





1
2n

P̃ (ηm, ti; ηk, tj) for m 6= k,

P̃ (1)(ηm, ti; ηk, tj)Fj(ti) +
1
2n

P̃ (2)(ηm, ti; ηk, tj)
for m = k,

where P̃ (1)(ηm, ti; ηk, tj), P̃ (2)(ηm, ti; ηk, tj) smooth enough functions.

4. Numerical experiments
In this section, we present some numerical results for two di�erent examples.

Together with the approximation of solution in the domain, we will provide
numerical results for approximations of the normal derivative on Γ−1 (taking
into account the jump relations of the single-layer potential normal derivative
[6]) and the trace of the solution on Γ0

∂u

∂ν
(x) = −1

2
ψ−1(x) +

∫

D

ψ(y)
∂P (x, y)
∂ν(x)

dy +
∫

Γ−1

ψ−1(y)
∂P (x, y)
∂ν(x)

ds(y)+

+
∫

Γ0

ψ0(y)
∂P (x, y)
∂ν(x)

ds(y), x ∈ Γ−1,

u(x) =
∫

D

ψ(y)P (x, y) dy +
∫

Γ−1

ψ−1(y)P (x, y) ds(y)+

+
∫

Γ0

ψ0(y)P (x, y) ds(y), x ∈ Γ0.

Example 1. Let the domain D (see Fig. 1) is bounded by the two circles:
Γ0 = {x(t) = (1.2 cos(t), 1.2 sin(t)), t ∈ [0, 2π)},
Γ−1 = {x−1(t) = (0.6 cos(t), 0.6 sin(t)), t ∈ [0, 2π)}.

Here we have ξ−1 = 0.5. The function σ is given and equal

10
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Fig. 1. The solution domain D in Ex. 1

σ(x) = 4− x2
1 + x2

2, x ∈ D.

Let us choose the boundary functions f1 and f2 of the elliptic problem as
f1 = x1x2 on Γ−1, f2 = 0.6x1x2(4− x2

1 + x2
2) on Γ0.

Easy to verify that uex = x1x2 is the exact solution to (1)-(3).
In (10),(12) we use the midpoint quadrature as a quadrature rule with respect

to ξ ∈ (ξ−1, 1) with weights αk = 1−ξ−1

N and quadrature nodes ηk = 1 −
1−ξ−1

2N (2k − 1), k = 1, . . . , N .

Tabl. 1. Absolute error on inner curves Γ̃1-Γ̃3 for Ex. 1

N n ‖uNn − uex‖∞,Γ̃1
‖uNn − uex‖∞,Γ̃2

‖uNn − uex‖∞,Γ̃3

3 32 2.33E-05 6.64E-05 1.31E-04
64 8.86E-08 2.52E-07 5.47E-07

6 64 1.16E-05 3.45E-05 7.51E-05
128 4.97E-08 1.47E-07 3.21E-07

12 128 5.80E-06 1.76E-05 3.85E-05
256 2.63E-08 7.97E-08 1.74E-07

We will provide the numerical error of the proposed approach on three curves
within the domain that are homothetic to the outer boundary and have the
following parametric representations

Γ̃k : x̃k = (ξ−1 +
1− ξ−1

40
(12k − 5))x(t), t ∈ [0, 2π), k = 1, 2, 3. (16)

Straightforward calculation gives that homothetic factors related to the curves
Γ̃1, Γ̃2, Γ̃3 are 0.5875, 0.7375 and 0.8875 respectively. They correspond to the
4th, 10th, 16th curve counting from the �rst inner curve after Γ−1 in case when
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discretisation parameter N = 20. The absolute errors for di�erent discretisation
parameters N and n are presented in Table 1.

Tabl. 2. Absolute error of the normal derivative and the func-
tion on boundaries and relative error in D for Ex. 1

N n ‖∂uNn
∂ν − ∂uex

∂ν ‖∞,Γ−1 ‖uNn − uex‖∞,Γ0

‖uNn−uex‖L2(D)

‖uex‖L2(D)
· 100%

3 32 3.09E-04 1.03E-04 1.455
64 1.17E-06 3.38E-07 0.271

6 64 1.89E-04 5.67E-05 0.270
128 8.08E-07 2.53E-06 0.025

12 128 1.05E-04 3.37E-04 0.277
256 4.73E-07 7.98E-07 0.276

In Table 2 we present the absolute errors of the normal derivative on the
Γ−1 and the solution on the Γ0 together with relative errors with respect to the
L2-norm in the domain D for the same parameters N and n as in Table 1. To
calculate the relative error in the domain we use the following approximation
with Ñ = 20 and ñ = 32

‖uNn − uex‖L2(D)

‖uex‖L2(D)
≈




Ñ∑

k=1

2ñ−1∑

j=0

(uNn − uex)2(η̃k, t̃j)J(η̃k, t̃j)

Ñ∑

k=1

2ñ−1∑

j=0

u2
ex(η̃k, t̃j)J(η̃k, t̃j)




1/2

. (17)
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a). exact solution
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Fig. 2. Exact solution and numerical approximation in domain D for Ex. 1

The numerical approximation (for discretisation parameters N = 6, n = 64)
and the exact solution in the domain D are shown in Fig. 2. From the numerical
results, we see that parameters N and n are linked between each other � double
increase N requires to increase the parameter n at least by two times to decrease

12
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the error. But, in general, presented relative errors in the domain look pretty
good as well as absolute errors on inner curves.
Example 2. Let the domain D (see Fig. 3) bounded by the two ellipses:

Γ0 = {x(t) = (a cos(t), b sin(t)), t ∈ [0, 2π)},
Γ−1 = {x−1(t) = (0.4a cos(t), 0.4b sin(t)), t ∈ [0, 2π)}.

Fig. 3. The solution domain D in Ex. 2

Tabl. 3. Absolute error on inner curves Γ̃1-Γ̃3 for Ex. 2

N n ‖uNn − uex‖∞,Γ̃1
‖uNn − uex‖∞,Γ̃2

‖uNn − uex‖∞,Γ̃3

3 32 3.92E-04 9.38E-04 3.07E-03
64 3.28E-06 1.05E-05 3.76E-05

6 64 2.16E-04 5.30E-04 1.05E-03
128 1.99E-06 6.24E-06 1.63E-05

12 128 1.18E-04 2.82E-04 5.46E-04
256 1.14E-06 3.47E-06 8.72E-06

Tabl. 4. Absolute error of the normal derivative and the func-
tion on boundaries and relative error in D for Ex. 2

N n ‖∂ũ
∂ν − ∂uex

∂ν ‖∞,Γ−1 ‖ũ− uex‖∞,Γ0

‖uNn−uex‖L2(D)

‖uex‖L2(D)
· 100%

3 32 5.60E-03 7.67E-02 1.695
64 3.10E-05 1.59E-04 0.377

6 64 4.07E-03 2.99E-02 0.377
128 2.65E-05 1.02E-04 0.052

12 128 2.43E-03 5.54E-02 0.094
256 1.72E-05 8.45E-04 0.077

13
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Here we have parameters a = 2, b = 1 and ξ−1 = 0.4. The function σ has
following representation

σ(x) = 8 + 2x1x2, x ∈ D.

The boundary functions f1 and f2 are known

f1 = x2
1−x2

2 on Γ−1, f2 = (8+2x1x2)(x2
1− 4x2

2)(0.25x2
1 +4x2

2)
−0.5 on Γ0.

For this example, the exact solution is uex = x2
1 − x2

2.
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Fig. 4. Exact solution and numerical approximation in domain D for Ex. 2

The absolute errors on inner curves (16) are shown in Table 3. Similarly to
the Ex. 1., the relative error of the solution in domain D, the absolute errors
of its normal derivative on the inner boundary Γ−1 and the solution error on
the outer boundary Γ0 are displayed in Table 4. In Fig. 4 the exact solution in
the domain D and its approximation for discretisation parameters N = 6 and
n = 128 are shown. Observing the results we can see the same high accuracy
of the obtained approximation of the solution as in Ex. 1.

5. Conclusion
An indirect integral equation method (based on the solution representation

via potentials with densities and using the Levi function) for the numerical so-
lution of a mixed boundary value problem for the generalized Laplace equation
in doubly connected domains was applied. The di�erential problem is reduced
to a system of boundary-domain integral equations. As a doubly connected do-
main, a domain bounded by two homothetic curves is considered. The change
of variables in double integrals, quadrature rules application and the collocation
of the obtained approximating equations at quadrature nodes lead to a system
of the linear equations. Having calculated approximate values of the unknown
densities we can �nd the approximation of the solution in the domain. Appli-
cability of the proposed approach is con�rmed by provided numerical results.
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